
14
11102
D9

15
11112
D10

13
11012
D8

12
11002
D7

11
10112
D6

10
10102
D5

9
10012
D4

8
10002
C3

7
01112
D3

6
01102
D2

5
01012
D1

4
01002
C2

3
00112
D0

2
00102
C1

1
00012
C0

Bit Position (decimal)
Bit Position (binary)
Contents: Check bit (C) or Data bit (D)

KEY

Bits 
checked
by C0

Bits 
checked
by C1

Bits 
checked
by C2

Bits 
checked
by C3



Suppose we wish to store or transmit
the data 10101010101



14
11102
D9

15
11112
D10

13
11012
D8

12
11002
D7

11
10112
D6

10
10102
D5

9
10012
D4

8
10002
C3

7
01112
D3

6
01102
D2

5
01012
D1

4
01002
C2

3
00112
D0

2
00102
C1

1
00012
C0

Bit Position (decimal)
Bit Position (binary)
Contents: Check bit (C) or Data bit (D)

KEY

Bits 
checked
by C0

Bits 
checked
by C1

Bits 
checked
by C2

Bits 
checked
by C3

1 1 1 1 1 10 0 0 0 0

Calculate values for the checking bits:

Choose C0 to make 1 1 1 1 0 0 1 ? have odd parity, so C0 = 0
Choose C1 to make 1 0 1 0 0 1 1 ? have odd parity, so C1 = 1
Choose C2 to make 1 0 1 0 0 1 0 ? have odd parity, so C2 = 0
Choose C3 to make 1 0 1 0 1 0 1 ? have odd parity, so C3 = 1 



Suppose the data bit 4 (which is at position 9 in 
the stored or transmitted message) is corrupted, so 
that the value read or received is 101010010100110

As a result of the corruption, we think that the 
original data was 10101000101, which is, of course,
not correct





Checking bits received = 1010
Checking bits expected = 0011

Doing a bitwise exclusive-or yields 1001,
which tells us that the bit in position 9 is 
corrupt.
 
Since the received value in this position
is 0, the correct value must be 1

Hence, the original data was really
101010101


